Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Pakrashi, S. C. \& Achari, B. (1971). Tetrahedron Lett. 4, 365-368. Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick. G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1997). C53, 1301-1302

The 4:2 Diels-Alder Adduct of 1,3-Cyclopentadiene with 1,4-Naphthoquinone

Blal Güneş, ${ }^{a}$ Hüseyin Soylu, ${ }^{a}$ Süheyla Özbey, ${ }^{b}$ Engin Kendi ${ }^{b}$ and Ali Aydin ${ }^{c}$
${ }^{a}$ Physics Department, Gazi Education Faculty, Gazi University, 06500 Besevler, Ankara, Turkey, ${ }^{\text {b }}$ Physics Engineering Department, Engineering Faculty, Hacettepe University, 06532 Beytepe, Ankara, Turkey, and 'Chemistry Department, Gazi Education Faculty, Gazi University, 06500 Besevler, Ankara, Turkey. E-mail: bgunes@cc.gazi.edu.tr

(Received 4 July 1996; accepted 17 April 1997)

Abstract

The title compound, 1,4-methano-1,4,4a,9a-tetrahydro-anthracene-9, 10 -dione, $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{2}$, is a Diels-Alder adduct resulting from a [4+2] cycloaddition of $1,3-$ cyclopentadiene with p-naphthoquinone.

Comment

The structure analysis of the title compound is part of an ongoing program of obtaining cage compounds by photochemical [2+2] cycloaddition (Maruyama, Terada \& Yamamoto, 1981; Kaftory \& Weisz, 1984). One aim is to obtain the norbornediene derivatives from the title compound (Diels \& Alder, 1929). The present structural analysis has been carried out in order to establish more details of the molecular geometry of the title compound, (I), thus providing a basis of comparison for our further studies.

The unit cell contains two independent molecules, related by a pseudo- c glide perpendicular to the a axis, in the asymmetric unit, the average deviation from c glide symmetry being 0.02 (2) Å between the two molecules. The C and O atoms of each dihydronaphthoquinone ring are coplanar (Pizzotti, Cenini, Ugo \&

Demartin, 1991). The r.m.s. deviations of fitted atoms for these planes are 0.025 and $0.057 \AA$, the maximum deviations from these planes are 0.04 (3) \AA for C6 and 0.164 (3) \AA for $\mathrm{Cl} A$. The two five-membered rings adopt envelope conformations with C 15 and C 15 A at the flaps. The dihedral angles between the envelope planes through C11-C14 and C11A-C14A, respectively, and the dihydronaphthoquinone moieties are 55.5 (1) and 49.7 (2) ${ }^{\circ}$ for each independent molecule. The dihedral angle is $29.8(2)^{\circ}$ between the two envelope planes and $57.7(1)^{\circ}$ between the two dihydronaphthoquinone moieties in the asymmetric unit.

The bond lengths and angles are quite normal and comparable with corresponding values observed in related molecules (Kerr, 1987; Beddoes, Gorman \& McNeeney, 1993).

Fig. 1. A perspective view of the molecular structure of the title compound with the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level.

Experimental

p-Naphthoquinone ($31.63 \mathrm{~g}, 0.20 \mathrm{~mol}$) was suspended in benzene (100 ml). A cyclopentadiene ($13.88 \mathrm{~g}, 0.21 \mathrm{~mol}$) solution in cooled benzene (20 ml) was added to the above suspension. After keeping the mixture overnight, the resulting colourless solid was separated and recrystallized from ethanol.

Crystal data
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{2}$
$M_{r}=224.25$
Triclinic
$P \overline{1}$
$a=9.4077(12) \AA$
$b=10.1752(10) \AA$
$c=12.5542(13) \AA$
$\alpha=71.698(9)^{\circ}$
$\beta=86.980(9)^{\circ}$
$\gamma=77.019(10)^{\circ}$
$V=1111.6(2) \AA^{3}$
$Z=4$
$D_{x}=1.340 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction:
empirical via ψ scan (Fair, 1990)
$T_{\text {min }}=0.924, T_{\text {max }}=0.999$
4502 measured reflections
4502 independent reflections

2917 reflections with
$I>2 \sigma(I)$
$\theta_{\text {max }}=26.29^{\circ}$
$h=0 \rightarrow 11$
$k=-12 \rightarrow 12$
$l=-15 \rightarrow 15$
3 standard reflections frequency: 120 min intensity decay: 2.3%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.062$
$w R\left(F^{2}\right)=0.129$
$S=1.481$
4502 reflections
404 parameters
All H atoms refined
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0237 P)^{2}\right.$ $+0.5769 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.182 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.172 \mathrm{e}^{-3}$
Extinction correction: SHELXL93 (Sheldrick, 1993)

Extinction coefficient: 0.008 (1)

Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters ($\AA,{ }^{\circ}$)

	Molecule 1	Molecule $2 \dagger$
$\mathrm{Ol}-\mathrm{Cl}$	1.217 (3)	1.218 (3)
O2-C4	1.221 (3)	1.223 (3)
$\mathrm{Cl2-C13}$	1.319 (4)	1.327 (5)
$\mathrm{O}-\mathrm{Cl}-\mathrm{C} 2$	119.6 (3)	120.3 (3)
$\mathrm{Ol}-\mathrm{Cl}-\mathrm{C} 6$	120.2 (3)	119.5 (3)
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 3$	121.0 (3)	119.6 (3)
O2-C4-C5	118.7 (3)	120.0 (3)
C3-C4-C5	120.3 (2)	120.4 (2)
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$	120.2 (2)	120.3 (2)
$\mathrm{Cl} 4-\mathrm{Cl} 5-\mathrm{Cl1}$	93.6 (2)	93.1 (3)
C11--C12--C13-C14	0.3 (3)	-0.1 (4)
C13-C12-C11-C15	32.5 (3)	-33.3 (3)
$\mathrm{C} 15-\mathrm{Cl} 4-\mathrm{Cl} 3-\mathrm{Cl} 2$	-33.3(3)	33.6 (3)

\dagger The atomic labels are each appended by A.
H atoms were located from difference Fourier maps and refined isotropically. The needle-shaped fragile crystals were difficult to cut so, eventually, a specimen of length 0.64 mm had to be used.

Data collection: CAD-4-PC (Enraf-Nonius, 1993). Cell refinement: CAD-4-PC. Data reduction: MolEN (Fair, 1990). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: SHELXL93.

The authors wish to acknowledge the purchase of a CAD-4 diffractometer under Grant DPT/TBAGl of the Scientific and Technical Research Council of Turkey.

[^0]
References

Beddoes, R. L., Gorman, A. A. \& McNeeney, S. P. (1993). Acta Cryst. C49, 1811-1813.
Diels, O. \& Alder, K. (1929). Chem. Ber. 62, 2337-2372.
Enraf-Nonius (1993). CAD-4-PC. Version 1.2. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius. Delft. The Netherlands.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kaftory, M. \& Weisz, A. (1984). Acta Cryst. C40, 456-464.
Kerr, K. А. (1987). Acta Cryst. C43, 956-958.
Maruyama, K., Terada, K. \& Yamamoto, Y. (1981). J. Org. Chem. 46, 5294-5300.
Pizzoti, M., Cenini, S., Ugo, R. \& Demartin, F. (1991). J. Chem. Soc. Dalton Trans. pp. 65-70.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick. G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1997). C53, 1302-1305

(土)-tert-Butyl 3-Hydroxy-4-phenyl-2(p-toluenesulfonylamino)pentanoateDichloromethane (1/1): a Pseudo Centre of Symmetry in an Enantiomeric Pair

Carl Henrik Görbitz, ${ }^{a}$ Uli Kazmaier ${ }^{b}$ and Roland Grandel ${ }^{b}$

${ }^{a}$ Department of Chemistry, University of Oslo, PO Box 1033 Blindern, N-0315 Oslo, Norway, and ${ }^{b}$ Organisch-Chemisches Institut, Ruprecht-Karls-Universität, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany. E-mail: c.h.gorbitz@ kjemi.uio.no
(Received 19 December 1996; accepted 21 April 1997)

Abstract

The title compound, $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}_{5} \mathrm{~S} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$, was investigated in order to study the stereochemistry of the β -hydroxy- α-amino acid derivatives formed by the aldol reaction of an ester enolate with an aldehyde. The racemate crystallizes with two independent formula units in the non-centrosymmetric space group $P n$ as hydrogenbonded dimers in which the two enantiomers are related by a pseudo centre of symmetry.

Comment

Among non-proteinogenic unnatural α-amino acids, β -hydroxy- α-amino acids are of special interest, especially in view of their activity as enzyme inhibitors (Rando, 1975; Walsh, Metzler, Powell \& Jacobsen, 1980; Abeles,

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: AB1411). Services for accessing these data are described at the back of the journal.

